47

47.1

IDIV—Signed Divide

Opcode Instruction Description
Signed divide AX (where AH must contain sign-
F6 /7 IDIV r/m8 extension of AL) by r/m byte. (Results: AL=Quotient,
AH=Remainder)
Signed divide DX:AX (where DX must contain sign-
F7 17 IDIV r/m16 extension of AX) by r/m word. (Results: AX=Quotient,
DX=Remainder)
Signed divide EDX:EAX (where EDX must contain
F7 17 IDIV r/m32 sign-extension of EAX) by r/m doubleword. (Results:
EAX=Quotient, EDX=Remainder)
Description

Divides (signed) thevalueinthe AL, AX, or EAX register by the source operand and stores the
result in the AX, DX:AX, or EDX:EAX registers. The source operand can be a general-purpose
register or amemory location. The action of this instruction depends on the operand size, as shown
in the following table:

Operand Size Dividend Divisor Quotient Remainder Quotient Range
Word/byte AX r/m8 AL AH -128 to +127
Doubleword/word DX:AX r/m16 AX DX -32,768 to +32,767
Quadword/doubleword EDX:EAX | r/m32 EAX EDX -2%1t02%2 -1

Non-integral results are truncated (chopped) towards 0. The sign of the remainder is aways the
same as the sign of the dividend. The absolute value of the remainder is always less than the

absolute value of the divisor. Overflow isindicated with the #DE (divide error) exception rather
than with the OF (overflow) flag.

Operation

IF SRC = 0
THEN #DE; (* divi
Fl;

de error *)

IF QJernadSlze = 8 (* word/ byte operation *)
THEN

t
I
(

ELSE

(* divide error *) ;

AL ~ tenp;
AH ~ AX Si gnedMbdul us SRC

Fl;
ELSE

enp —~ AX/ SRC, (* signed division *)

F (temp > 7FH) OR (tenp < 80H

* if a positive result is greater than 7FH or a negative result is |less than 80H *)
THEN #DE;

| F OpernadSize = 16 (* doubl eword/ word operation *)
THE

* o+ T

—~———

np
(t
i f

THEN #DE;
ELSE

Intel Architecture Software Developer's Manual

~ DX:AX /| SRC, (* signed d|V|S|on *)
enp > 7FFFH) OR (tenp < 8000H)

a positive result is greater than 7FFFH *)
or a negative result is |less than 8000H *)

(* divide error *) ;

47-155

47-156

AX ~ tenp;
DX ~ DX: AX Si gnedMbdul us SRC;

Fl;
ELSE (* quadwor d/ doubl eword operation *)

Fl;
Fl;

e
F
*
*

mp ~ EDX EAX / SRC; (* signed division *)
(tenp > 7FFFFFFFH) OR (tenp < 80000000H)
if a positive result is greater than 7FFFFFFFH *)
or a negative result is |less than 80000000H *)
THEN #DE; (* divide error *) ;
ELSE
EAX ~ tenp;
EDX ~ EDXE: AX Si gnedMbdul us SRC,

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE

#GP(0)

#55(0)
#PF(fault-code)
#AC(0)

If the source operand (divisor) is 0.

The signed result (quotient) istoo large for the destination.

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If theDS, ES, FS, or GSregister is used to access memory and it containsanull
segment selector.

If amemory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions

#DE

#GP

#SS

If the source operand (divisor) is 0.

The signed result (quotient) istoo large for the destination.

If amemory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#DE

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the source operand (divisor) is 0.

The signed result (quotient) istoo large for the destination.

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If amemory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made.

Intel Architecture Software Developer’'s Manual

intel.

47.2

IMUL—Signed Multiply

Opcode Instruction Description
F6 /5 IMUL r/m8 AX « AL Or/m byte
F71/5 IMUL r/m16 DX:AX « AX Or/m word
F71/5 IMUL /m32 EDX:EAX ~ EAX Or/m doubleword
OF AF /r IMUL r16,r/m16 word register — word register O r/m word
OF AF /r IMUL r32,r/m32 doubleword register — doubleword register 0r/m
doubleword
6B /rib IMUL r16,r/m16,imm8 word register — r/m16 Osign-extended immediate byte
6B /rib IMUL r32,1/m32,imm8 g)c;tuebleword register — r/m32 Osign-extended immediate
6B Irib IMUL r16,imm8 \év;red register — word register [Jsign-extended immediate
. . doubleword register — doubleword register Osign-
6B /rib IMUL r32,imm8 extended immediate byte
69 /r iw IMUL. 116,/ word register — r/m16 Oimmediate word
m16,imm16
. IMUL r32,1/ . . .
69 /rid m32.imm32 doubleword register — /m32 Oimmediate doubleword
69 /r iw IMUL r16,imm16 word register — r/m16 Oimmediate word
69 /rid IMUL r32,imm32 doubleword register — r/m32 Oimmediate doubleword
Description

Performs a signed multiplication of two operands. This instruction has three forms, depending on
the number of operands.

* One-operand form. Thisformisidentical to that used by the MUL instruction. Here, the
source operand (in ageneral-purpose register or memory location) is multiplied by thevaluein
the AL, AX, or EAX register (depending on the operand size) and the product is stored in the
AX, DX:AX, or EDX:EAX registers, respectively.

¢ Two-operand form. With thisform the destination operand (thefirst operand) is multiplied by
the source operand (second operand). The destination operand is a general-purpose register
and the source operand is an immediate value, a general-purpose register, or amemory
location. The product is then stored in the destination operand ocation.

* Three-operand form. Thisform requires a destination operand (the first operand) and two
source operands (the second and the third operands). Here, the first source operand (which can
be a general-purpose register or amemory location) is multiplied by the second source
operand (an immediate value). The product is then stored in the destination operand (a
general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destination
operand format.

The CF and OF flags are set when significant bits are carried into the upper half of the result. The
CF and OF flags are cleared when the result fits exactly in the lower half of the result.

Intel Architecture Software Developer's Manual 47-157

47-158

intel.

Thethree forms of the IMUL instruction are similar in that the length of the product is calculated to
twice the length of the operands. With the one-operand form, the product is stored exactly in the
destination. With the two- and three- operand forms, however, result is truncated to the length of
the destination before it is stored in the destination register. Because of this truncation, the CF or
OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may al so be used with unsigned operands because the lower half
of the product is the same regardless if the operands are signed or unsigned. The CF and OF flags,
however, cannot be used to determine if the upper half of the result is non-zero.

Operation

I'F (Nunber Of Oper ands = 1)
THEN | F (OperandSi ze = 8)
THEN
AX « AL OSRC (* signed multiplication *)
IF ((AH = 00H) OR (AH = FFH))
THEN CF = 0; OF = 0;
ELSE CF = 1; OF = 1;

Fl;
ELSE | F OperandSi ze = 16
THEN

2
2
T

.
%

ned nultiplication *)
FFFFH))

ELSE (* Oper andSi ze =

XEAX*EAXDSRC (signed nul tiplication *)
I'F ((EDX = 00000000H) OR (EDX = FFFFFFFFH))
0; 0;
1 1

Q2

Fl;

Fl;
ELSE | F (Nunber Of Qper ands = 2)
THEN
tenp ~ DEST 0 SRC (* signed mul
DEST ~ DEST 0O SRC (* signed nulti
IF tenp # DEST
THEN CF
ELSE CF
Fl;

tiplication; tenp is double DEST size*)
plication *)

1;
0;

1;
0;

2]

ELSE (* Nunber O Operands = 3 *)
DEST ~ SRC1 O SRC2 (* signed nultiplication *)
te rrp ~ SRC1 O SRC2 (* signed nultiplication; tenp is double SRCl size *)
IF tenp # DEST
THEN CF = 1; OF
ELSE CF = 0; OF
Fl;

1
0;

Fl;
Fl;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits are
carried into the upper half of the result and cleared when the result fits exactly in the lower half of
the result. For the two- and three-operand forms of the instruction, the CF and OF flags are set
when the result must be truncated to fit in the destination operand size and cleared when the result
fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
If theDS, ES, FS, or GSregister is used to access memory and it contains anull
segment selector.

#SS(0) If amemory operand effective addressis outside the SS segment limit.

Intel Architecture Software Developer’'s Manual

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory referenceis made
while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
#SS If amemory operand effective addressis outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
#SS(0) If amemory operand effective addressis outside the SS segment limit.

#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

47.3 IN—Input from Port

Opcode Instruction Description

E4 ib IN AL,imm8 Input byte from imm8 1/O port address into AL

E5 ib IN AX,imm8 Input byte from imm81/0O port address into AX

E5 ib IN EAX,imm8 Input byte from imm8 1/O port address into EAX

EC IN AL,DX Input byte from 1/O port in DX into AL

ED IN AX,DX Input word from 1/O port in DX into AX

ED IN EAX,DX Input doubleword from 1/O port in DX into EAX
Description

Copies the value from the 1/0 port specified with the second operand (source operand) to the
destination operand (first operand). The source operand can be a byte-immediate or the DX
register; the destination operand can beregister AL, AX, or EAX, depending on the size of the port
being accessed (8, 16, or 32 hits, respectively). Using the DX register as a source operand allows I/
O port addresses from 0 to 65,535 to be accessed; using abyte immediate allows /O port addresses
0 to 255 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing a 16- and
32-hit 1/O port, the operand-size attribute determines the port size.

At the machine code level, 1/O instructions are shorter when accessing 8-bit I/O ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I1/0O address space.
See “Input/Output”, for more information on accessing I/O ports in the I/O address space.

Intel Architecture Software Developer's Manual 47-159

47.4

47-160

Operation
IF ((PE =1) AND ((CPL > ICPL) OR (W = 1)))
THEN (* Protected node with CPL > I OPL or virtual -8086 node *)

IF (Any 1/O Permission Bit for 1/O port being accessed = 1)
THEN (* I/O operation is not allowed *)
#GP(0) ;

(0);
ELSE (* I/O operation is allowed *)
DEST —~ SRC, (* Reads fromselected |/O port *)

Fl;
ELSE (Real Mbde or Protected Mbde with CPL < | OPL *)
DEST ~ SRC, (* Reads fromselected |/0O port *)
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL isgreater than (has less privilege) the |/O privilege level (IOPL) and
any of the corresponding 1/0O permission bitsin TSS for the I/O port being
accessed is 1.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bitsin the TSS for the 1/0 port being accessed is 1.

INC—Increment by 1

Opcode Instruction Description

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC r/m16 Increment r/m word by 1

FF /0 INC r/m32 Increment r/m doubleword by 1

40+ rw INC ri6 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1
Description

Adds 1 to the destination operand, while preserving the state of the CF flag. The destination
operand can be aregister or amemory location. Thisinstruction allows aloop counter to be
updated without disturbing the CF flag. (Use a ADD instruction with an immediate operand of 1 to
perform an increment operation that does updates the CF flag.)

Operation

DEST ~ DEST +1;

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Intel Architecture Software Developer’'s Manual

intgl. /

Protected Mode Exceptions
#GP(0) If the destination operand is located in a nonwritable segment.

If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GSregister is used to access memory and it contains anull
segment selector.

#SS(0) If amemory operand effective addressis outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
#SS If amemory operand effective addressis outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
#SS(0) If amemory operand effective addressis outside the SS segment limit.

#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

47.5 INS/INSB/INSW/INSD—Input from Port to String

Opcode Instruction Description
Input byte from 1/O port specified in DX into memory
6C INS m8, DX location specified in ES:(E)DI
Input word from 1/O port specified in DX into memory
60 INS m16, DX location specified in ES:(E)DI
Input doubleword from 1/O port specified in DX into
60 INS m32, DX memory location specified in ES:(E)DI
6C INSB Input byte from 1/O port specified in DX into memory
location specified with ES:(E)DI
Input word from 1/O port specified in DX into memory
60 INSW location specified in ES:(E)DI
6D INSD Input doubleword from 1/O port specified in DX into
memory location specified in ES:(E)DI

Intel Architecture Software Developer's Manual 47-161

, intgl.

Description

Copies the data from the I/O port specified with the source operand (second operand) to the
destination operand (first operand). The source operand is an 1/O port address (from 0 to 65,535)
that is read from the DX register. The destination operand is a memory location, the address of
which isread from either the ES.EDI or the ES:DI registers (depending on the address-size
attribute of the instruction, 32 or 16, respectively). (The ES segment cannot be overridden with a
segment override prefix.) The size of the /O port being accessed (that is, the size of the source and
destination operands) is determined by the opcode for an 8-bit 1/O port or by the operand-size
attribute of the instruction for a 16- or 32-hit 1/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form
and the “no-operands” form. The explicit-operands form (specified with the INS mnemonic)
allows the source and destination operands to be specified explicitly. Here, the source operand
must be “DX,” and the destination operand should be a symbol that indicates the size of the I/O
port and the destination address. This explicit-operands form is provided to allow documentation;
however, note that the documentation provided by this form can be misleading. That is, the
destination operand symbol must specify the cotsgu (size) of the operand (byte, word, or
doubleword), but it does not have to specify the cofogation. The location is always specified

by the ES:(E)DI registers, which must be loaded correctly before the INS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
INS instructions. Here also DX is assumed by the processor to be the source operand and ES:(E)DI
is assumed to be the destination operand. The size of the I/O port is specified with the choice of
mnemonic: INSB (byte), INSW (word), or INSD (doubleword).

After the byte, word, or doubleword is transfer from the 1/0O port to the memory location, the (E)DI
register is incremented or decremented automatically according to the setting of the DF flag in the
EFLAGS register. (If the DF flag is 0, the (E)DI register is incremented; if the DF flag is 1, the
(E)DI register is decremented.) The (E)DI register is incremented or decremented by 1 for byte
operations, by 2 for word operations, or by 4 for doubleword operations.

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block input
of ECX bytes, words, or doublewords. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat String
Operation Prefix” in this chapter for a description of the REP prefix.

These instructions are only useful for accessing I/O ports located in the processor’s /O address
space. See“Input/Output”, for more information on accessing I/O ports in the I/O address space.

Operation

I F ((PE = 1) AND ((CPL > IOPL) CR (W= 1)))
N (* Protected nbde with CPL > | OPL or virtual - 8086 npde *)
IF (Any I/O Permission Bit for 1/0O port being accessed = 1)
THEN (* I/O operation is not allowed *)
#GP(0

ELSE (* /o operation is allowed *)
DEST —~ SRC, (* Reads from|/O port *)

Fl;
ELSE (Real Mbde or Protected Mdde with CPL < | OPL *)
DEST - SRC, (* Reads fromI/O port *)

IF(bytetransfe)
THEN |F DF = 0

THEN (E)DI ~ (B)DI + 1;

ELSE (E)DI ~ (E)DI-1,;

Fl;

ELSE IF (word transfer)
THEN IF DF =0
THEN (E)DI ~ (E)DI +2;
ELSE (E)DI ~ (E)DI-2;
Fl;

ELSE (* doubleword transfer *)
THEN IFDF =0

Fl;

47-162 Intel Architecture Software Developer’'s Manual

intgl. /

THEN (E)

ELSE

E)D + 4;
DI - 4;

—~
m

a
e}
Tt

m—

(
Fl;
Fl;
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL isgreater than (hasless privilege) the I/O privilege level (IOPL) and
any of the corresponding 1/0O permission bitsin TSS for the I/O port being
accessed is 1.

If the destination is located in a nonwritable segment.

If anillegal memory operand effective address in the ES segments is given.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made

while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective addressis outside the CS, DS, ES, FS, or GS
segment limit.
#SS If amemory operand effective addressis outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the 1/O port being accessed is 1.

#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

47.6 INT n/INTO/INT 3—Call to Interrupt Procedure

Opcode Instruction Description
CC INT 3 Interrupt 3—trap to debugger
CD ib INT imm8 Interrupt vector number specified by immediate byte
CE INTO Interrupt 4—if overflow flag is 1
Description

The INT n instruction generates a call to the interrupt or exception handler specified with the
destination operand (see “Interrupts and Exceptions”). The destination operand specifies an
interrupt vector number from 0 to 255, encoded as an 8-bit unsigned intermediate value. Each
interrupt vector number provides an index to a gate descriptor in the IDT. The first 32 interrupt
vector numbers are reserved by Intel for system use. Some of these interrupts are used for
internally generated exceptions.

Intel Architecture Software Developer's Manual 47-163

47-164

intel.

The INT ninstruction is the general mnemonic for executing a software-generated call to an
interrupt handler. The INTO instruction is a special mnemonic for calling overflow exception
(#OF), interrupt vector number 4. The overflow interrupt checks the OF flag in the EFLAGS
register and calls the overflow interrupt handler if the OF flagisset to 1.

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the
debug exception handler. (This one byte form is valuable because it can be used to replace the first
byte of any instruction with a breakpoint, including other one byte instructions, without over-
writing other code). To further support its function as a debug breakpoint, the interrupt generated
with the CC opcode al so differs from the regular software interrupts as follows:

* Interrupt redirection does not happen when in VME mode; the interrupt is handled by a
protected-mode handler.

¢ The virtual-8086 mode |OPL checks do not occur. Theinterrupt is taken without faulting at
any |OPL level.

Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special features. Intel
and Microsoft assemblers will not generate the CD03 opcode from any mnemonic, but this opcode
can be created by direct numeric code definition or by self-modifying code.

The action of the INT instruction (including the INTO and INT 3 instructions) is similar to that of

a far call made with the CALL instruction. The primary difference is that with thenINT

instruction, the EFLAGS register is pushed onto the stack before the return address. (The return
address is a far address consisting of the current values of the CS and EIP registers.) Returns from
interrupt procedures are handled with the IRET instruction, which pops the EFLAGS information
and return address from the stack.

The interrupt vector number specifies an interrupt descriptor in the interrupt descriptor table (IDT);
that is, it provides index into the IDT. The selected interrupt descriptor in turn contains a pointer to
an interrupt or exception handler procedure. In protected mode, the IDT contains an array of 8-
byte descriptors, each of which is an interrupt gate, trap gate, or task gate. In real-address mode,
the IDT is an array of 4-byte far pointers (2-byte code segment selector and a 2-byte instruction
pointer), each of which point directly to a procedure in the selected segment. (Note that in real-
address mode, the IDT is called theerrupt vector table, and it's pointers are called interrupt
vectors.)

The following decision table indicates which action in the lower portion of the table is taken given
the conditions in the upper portion of the table. Each Y in the lower section of the decision table
represents a procedure defined in the “Operation” section for this instruction (except #GP).

PE 0 1 1 1 1 1 1 1
VM - - - - - 0 1 1
IOPL - - - - - - <3 =3
RELATIONSHIP _ | PPLs DPL> |DPL= 20T | -

CPL CPL CPLorcC NC
INTERRUPT TYPE - SIW - - - - - -
GATE TYPE _ _ Task Trap or Trap or Trap or Trap or Trap or

Interrupt | Interrupt | Interrupt | Interrupt | Interrupt

REAL-ADDRESS- v
MODE
PROTECTED-MODE Y Y Y Y Y Y Y

Intel Architecture Software Developer’'s Manual

TRAP-OR-
INTERRUPT-GATE

INTER-PRIVILEGE-
LEVEL-INTERRUPT

INTRA-PRIVILEGE-
LEVEL-INTERRUPT

INTERRUPT-FROM-
VIRTUAL-8086- Y
MODE

TASK-GATE Y
#GP Y Y Y

NOTES:

1. -Don't Care.

2. YYes, Action Taken.

3. BlankAction Not Taken.

When the processor is executing in virtual-8086 mode, the IOPL determinesthe action of the INT n
instruction. If the IOPL islessthan 3, the processor generates a general protection exception
(#GP); if the IOPL is 3, the processor executes a protected mode interrupt to privilege level 0. The
interrupt gate’s DPL must be set to three and the target CPL of the interrupt handler procedure must
be 0 to execute the protected mode interrupt to privilege level 0.

Theinterrupt descriptor table register (IDTR) specifies the base linear address and limit of the IDT.
Theinitia base address value of the IDTR after the processor is powered up or reset is 0.

Operation

Thefollowing operational description appliesnot only tothe INT nand INTO instructions, but also
to external interrupts and exceptions.
I'F PE=O

THEN

GOTO REAL- ADDRESS- MODE;
ELSE (* PE=1 *)
I'F (VMEL AND I OPL < 3 AND I NT n)
THEN

#GP(0);
ELSE (* protected node or virtual -8086 npde interrupt *)
GOTO PROTECTED- MCODE;
Fl;
Fl ;

REAL - ADDRESS- MODE:
IF ((DEST 04) + 3) is not within IDT limt THEN #GP; FI;
I F stack not | arge enough for a 6-byte return i nformation THEN #SS; FI;
Push (EFLAGS[15:0]);
IF « 0; (* dear interrupt flag *)
TF « 0; (* Cear trap flag *)
AC —~ 0; (*Clear AC flag*)

(* No error codes are pushed *)

CS « |DT(Descriptor (vector_nunber O4), selector));

EIP ~ |DT(Descriptor (vector_nunber 0O4), offset)); (* 16 bit offset AND 0000FFFFH *)
END;

PROTECTED- MODE:
IF ((DEST O8) + 7) is not within IDT limts
OR sel ected | DT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST 0 8) + 2 + EXT);
(* EXT is bit O in error code *)
Fl;
IF software interrupt (* generated by INT n, INT 3, or |INTO *)
THEN
| F gate descriptor DPL < CPL
THEN #GP((vector_number 08) + 2);
(* PE=1, DPL<CPL, software interrupt *)

Intel Architecture Software Developer's Manual 47-165

|

F gate not present THEN #NP((vector_nunber 08) + 2 + EXT); FI;

F task gate (* specified in the selected interrupt table descrlptor *)
THEN GOTO TASK- GATE;

ELSE GOTO TRAP- OR- | NTERRUPT- GATE; (* PE=1, trap/interrupt gate *)

F
|
|

FI;
END;

TASK- GATE: (* PE=1, task gate *)
Read segnent selector in task gate (IDT descriptor);

IF local /global bit is set to |ocal

OR index not within GDT limts
THEN #GP(TSS sel ector);

Fl ;

Access TSS descri ptor in GDT;

I F TSS descriptor specifies that the TSS is busy (loworder 5 bits set to 00001)
THEN #GP(TSS sel ector);

I F TSS not present
THEN #NP(TSS sel ector);

Fl;
SW TCH TASKS (wi th nesting) to TSS;
IF interrupt caused by fault with error code
THEN
IF stack linmt does not allow push of error code
THEN #SS(0) ;

Fl;
Push(error code);
Fl;
IF EIP not within code segment limt
THEN #GP(0) ;
END,
TRAP- OR- | NTERRUPT- GATE
Read segment selector for trap or interrupt gate (IDT descriptor);
| F segnent sel ector for code segnent is null
THEN #GP(OH + EXT); (* null selector with EXT flag set *)
Fl;
| F segnent selector is not within its descriptor table linmts
THEN #GP(sel ector + EXT);
Fl;
Read trap or interrupt handl er descriptor;
| F descriptor does not indicate a code segnent
OR code segnent descriptor DPL> CPL
THEN #GP(sel ector + EXT);
Fl;
IF trap or interrupt gate segnent is not present,
THEN #NP(sel ector + EXT);
Fl;
| F code segnent is non-conform ng AND DPL < CPL
THEN | F VM=0
THEN
GOTO | NTER- PRI VI LEGE- LEVEL- | NTERRUPT;
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL<CPL, VM=0 *)
ELSE (* VMEL *)
| F code segnent DPL # 0 THEN #GP(new code segnent selector); FI;
GOTO | NTERRUPT- FROM VI RTUAL - 8086- MODE;
(* PE=1, interrupt or trap gate, DPL<CPL, VM=l *)
Fl;
ELSE (* PE=1, interrupt or trap gate, DPL = CPL *)
I F VM1 THEN #GP(new code segnent selector); Fl;
| F code segnent is conform ng OR code segment DPL = CPL
THEN
GOTO | NTRA- PRI VI LEGE- LEVEL- | NTERRUPT;
ELSE
#GP(CodeSegnent Sel ector + EXT);
(* PE=1, interrupt or trap gate, nonconformng *)
(* code segnent, DPL>CPL *)
Fl;
Fl;
END;

| NTER- PREVI LEGE- LEVEL- | NTERRUPT
(* PE=1, interrupt or trap gate, non-conform ng code segment, DPL<CPL *)
(* Check segnment sel ector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSst ackAddress — (new code segnent DPL 0 8) + 4
| F (TSSst ackAddress + 7) > TSS limt
THEN #TS(current TSS selector); FI;
NewSS ~ TSSstackAddress + 4;
NewESP ~ stack address;
ELSE (* TSS is 16-bit *)
TSSst ackAddress — (new code segnent DPL 0 4) + 2
| F (TSSst ackAddress + 4) > TSS limt

47-166 Intel Architecture Software Developer’'s Manual

THEN #TS(current TSS selector); FI;

NewESP ~ TSSst ackAddr ess;

NewSS ~ TSSst ackAddress + 2;
Fl;
I F segment selector is null THEN #TS(EXT); FI;
| F segnent selector index is not withinits descrlptor table limts

OR segnent selector’s RPL # DPL of code segnent,
THEN #TS(SS sel ector + EXT);

Fl;
Read segnent descriptor for stack segment in GDT or LDT;
| F stack segment DPL # DPL of code segnent,
OR stack segnent does not indicate witable data segnent,
THEN #TS(SS sel ector + EXT);
Fl;
| F stack segnment not present THEN #SS(SS sel ector+EXT); FI;
IF 32-bit gate
THEN
I F new stack does not have roomfor 24 bytes (error code pushed)
OR 20 bytes (no error code pushed)
THEN #SS(segnment sel ector + EXT);

Fl;
ELSE (* 16-bit gate *)
I F new stack does not have roomfor 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);
THEN #SS(segnment sel ector + EXT);
Fl;
Fl;
IF instruction pointer is not within code segnent limts THEN #GP(0); FI;
SS: ESP ~ TSS(NewSS: NeweSP) (* segnent descriptor information also ['daded *)
IF 32-bit gate
THEN
CS:EIP ~ Gate(CS:EIP); (* segnent descriptor information also |oaded *)
ELSE (* 16-bit gate *)
CS:IP — Gate(CS:I1P); (* segnent descriptor information also |oaded *)

Fl;
IF 32-bit gate
THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);
Push(EFLAGS) ;
Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)
ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS(15..0));
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *
Fl;

CPL ~ CodeSegnent Descri ptor (DPL);
CS(RPL) ~ CPL;
IF interrupt gate

THEN IF « O (* interrupt flag to O (disabled) *); FI;
TF
VM
RF
NT
END;

eLeee

Tt

| NTERRUPT- FROM VI RTUAL - 8086- MCDE:
(* Check segnent selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSst ackAddress — (new code segnent DPL 08) + 4
| F (TSSst ackAddress + 7) > TSS limt
THEN #TS(current TSS selector); FI;
NewSS ~ TSSstackAddress + 4;
NewESP ~ stack address;
ELSE (* TSS is 16-bit *)
TSSst ackAddress — (new code segnent DPL 04) + 2
| F (TSSst ackAddress + 4) > TSS limt
THEN #TS(current TSS selector); FI;
NewESP ~ TSSst ackAddress;
NewSS ~ TSSstackAddress + 2;
Fl;
| F segnent selector is null THEN #TS(EXT); Fl;
| F segnent selector index is not within its descnptor table limts
OR segnent selector’s RPL # DPL of code segment,
THEN #TS(SS sel ector + EXT);
Fl;
Access segnent descriptor for stack segment in GDT or LDT;
| F stack segnment DPL # DPL of code segnent,
OR stack segnent does not indicate witable data segnent,
THEN #TS(SS sel ector + EXT);
Fl;
| F stack segnment not present THEN #SS(SS sel ector +EXT); FI;
IF 32-bit gate
THEN

Intel Architecture Software Developer's Manual 47-167

! In

I F new stack does not have roomfor 40 bytes (error code pushed)
OR 36 bytes (no error code pushed);
THEN #SS(segnment sel ector + EXT);

Fl;
ELSE (* 16-bit gate *)
I F new stack does not have roomfor 20 bytes (error code pushed)
OR 18 bytes (no error code pushed);
THEN #SS(segnment sel ector + EXT);
Fl;
Fl;
IF instruction pointer is not within code segnent limts THEN #GP(0); FI;
t enpEFLAGS ~ EFLAGS;
VM « 0;
TF « O;
RF ~ O;
| F service through interrupt gate THEN IF ~ 0; FI;
TenpSS ~ SS;
TenpESP ~ ESP;
SS: ESP ~ TSS(SS0: ESPO); (* Change to level 0 stack segnment *)
(* Follow ng pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segnent selector pushes in 32-bit node are padded to two words *)
Push(GS);
Push(FS);
Push(DS) ;
Push(ES) ;
Push(TenpSS) ;
Push(TenpESP) ;
Push(TenpEFI ags)
Push(CS);
Push(El P)
GS ~ 0; (*segrrent registers nullified, invalid in protected node *)
FS
DS
ES
CS - Gate(CS)
| F Oper andSi ze=32
THEN
EIP —~ Gate(instruction pointer);
ELSE (* OperandSize is 16 *)
EIP —~ Gate(instruction pointer) AND 0000FFFFH;

0;
0;
0;

Tt

Fl;

(* Starts execution of new routine in Protected Mde *)
END;
I NTRA- PRI VI LEGE- LEVEL- | NTERRUPT:

(* PE=1, DPL = CPL or conform ng segnent *)

IF 32-bit gate

THEN
I'F current stack does not have roomfor 16 bytes (error code pushed)
OR 12 bytes (no error code pushed); THEN #SS(0);

Fl;
ELSE (* 16-bit gate *)
I'F current stack does not have roomfor 8 bytes (error code pushed)
OR 6 bytes (no error code pushed); THEN #SS(O0);
Fl;
IF instruction pointer not within code segnent limt THEN #GP(0); FI;
IF 32-bit gate
THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS EIP ~ CGate(CS:EIP); (* segmant descriptor information also |oaded *)
Push (ErrorCode); (* it any *)
ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ~ Gate(CS:1P); (* segnent descriptor information also |oaded *)
Push (ErrorCode); (* if any *)

Fl;
CS(RPL) «~ CPL;
IF interrupt gate

THEN
IF ~ 0; FI;
TF ~ 0;
NT « O;
VM ~ 0;
RF - 0

Fl;
END;

47-168 Intel Architecture Software Developer’'s Manual

tel.

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be

cleared, depending on the mode of operation of the processor when the INT instruction is executed

(see the “Operation” section). If the interrupt uses a task gate, any flags may be set or cleared,
controlled by the EFLAGS image in the new task’s TSS.

Protected Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)

#SS(selector)

#NP(selector)
#TS(selector)

#PF(fault-code)

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is
beyond the code segment limits.

If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector index
is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the IMTINT 3, or INTO instruction and the
DPL of an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a segment
descriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

If pushing the return address, flags, or error code onto the stack exceeds the
bounds of the stack segment and no stack switch occurs.

If the SS register is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, or stack segment pointer exceeds
the bounds of the new stack segment when a stack switch occurs.

If code segment, interrupt-, trap-, or task gate, or TSS is not present.

If the RPL of the stack segment selector in the TSS is not equal to the DPL of
the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor pointed to by the stack segment selector
in the TSS is not equal to the DPL of the code segment descriptor for the
interrupt or trap gate.

If the stack segment selector in the TSS is null.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits.

If a page fault occurs.

Real-Address Mode Exceptions

#GP

If a memory operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

Intel Architecture Software Developer's Manual 47-169

47-170

u
Inte|®
If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds the
bounds of the stack segment.

Virtual-8086 Mode Exceptions

#GP(0) (For INT n, INTO, or BOUND instruction) If the |OPL islessthan 3 or the DPL
of the interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gateis
beyond the code segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gateis null.

If ainterrupt-, trap-, or task gate, code segment, or TSS segment selector index
is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If aninterrupt isgenerated by the INT ninstruction and the DPL of an interrupt-
, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a segment
descriptor for a code segment.

If the segment selector for a TSS hasits local/global bit set for local.

#SS(sel ector) If the SSregister is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, stack segment pointer, or data
segments exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSSis not present.

#T S(selector) If the RPL of the stack segment selector in the TSSis not equal to the DPL of
the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor for the TSS's stack segment is not equal
to the DPL of the code segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table limits.
#PF(fault-code) If a page fault occurs.
#BP If the INT 3 instruction is executed.
#OF If the INTO instruction is executed and the OF flag is set.

Intel Architecture Software Developer’'s Manual

intel.

a7.7

INVD—Invalidate Internal Caches

Opcode Instruction Description
OF 08 INVD Flush internal caches; initiate flushing of external caches.
Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus cycle that
directs external caches to also flush themselves. Data held in internal caches is not written back to
main memory.

After executing this instruction, the processor does not wait for the external caches to complete
their flushing operation before proceeding with instruction execution. It is the responsibility of
hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in protected mode,
the CPL of a program or procedure must be 0 to execute this instruction.

Use this instruction with care. Data cached internally and not written back to main memory will be
lost. Unless there is a specific requirement or benefit to flushing caches without writing back
modified cache lines (for example, testing or fault recovery where cache coherency with main
memory is not a concern), software should use the WBINVD instruction.

Intel Architecture Compatibility

The INVD instruction is implementation dependent, and its function may be implemented
differently on future Intel Architecture processors. This instruction is not supported on Intel
Architecture processors earlier than the Intel486 processor.

Operation

Fl ush(I nt er nal Caches) ;
Si gnal Fl ush(Ext er nal Caches) ;
Continue (* Continue execution);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.

Intel Architecture Software Developer's Manual 47-171

, intgl.

47.8 INVLPG—Invalidate TLB Entry

Opcode Instruction Description
OF 01/7 INVLPG m Invalidate TLB Entry for page that contains m
Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the source
operand. The source operand isamemory address. The processor determines the page that contains
that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction.

The INVLPG instruction normally flushesthe TLB entry only for the specified page; however, in
some cases, it flushes the entire TLB. See “MOV—Move to/from Control Registers” in this
chapter for further information on operations that flush the TLB.

Intel Architecture Compatibility

The INVLPG instruction is implementation dependent, and its function may be implemented
differently on future Intel Architecture processors. This instruction is not supported on Intel
Architecture processors earlier than the Intel486 processor.

Operation

Fl ush(Rel evant TLBEntri es);
Continue (* Continue execution);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

Real-Address Mode Exceptions
#UD Operand is a register.

Virtual-8086 Mode Exceptions
#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

47-172 Intel Architecture Software Developer’'s Manual

intel.

47.9

IRET/IRETD—Interrupt Return

Opcode Instruction Description

CF IRET Interrupt return (16-bit operand size)

CF IRETD Interrupt return (32-bit operand size)
Description

Returns program control from an exception or interrupt handler to a program or procedure that was
interrupted by an exception, an external interrupt, or a software-generated interrupt. These
instructions are also used to perform a return from anested task. (A nested task is created when a
CALL instruction is used to initiate a task switch or when an interrupt or exception causes a task
switch to an interrupt or exception handler.)

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return
double) isintended for use when returning from an interrupt when using the 32-bit operand size;
however, most assemblers use the IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or
procedure. During this operation, the processor pops the return instruction pointer, return code
segment selector, and EFL AGS image from the stack to the EIP, CS, and EFLAGS registers,
respectively, and then resumes execution of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested
task) and VM flagsin the EFLAGS register and the VM flag in the EFLAGS image stored on the
current stack. Depending on the setting of these flags, the processor performs the following types
of interrupt returns:

* Return from virtual-8086 mode.

* Return to virtual-8086 mode.

* Intra-privilege leve return.

* Inter-privilege level return.

* Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs afar return from the
interrupt procedure, without a task switch. The code segment being returned to must be equally or
less privileged than the interrupt handler routine (asindicated by the RPL field of the code segment
selector popped from the stack). Aswith areal-address mode interrupt return, the IRET instruction
pops the return instruction pointer, return code segment selector, and EFLAGS image from the
stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the
interrupted program or procedure. If the return is to another privilege level, the IRET instruction
also pops the stack pointer and SS from the stack, before resuming program execution. If thereturn
isto virtual-8086 mode, the processor aso pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs atask switch (return) from anested task (atask
called with a CALL instruction, an interrupt, or an exception) back to the calling or interrupted
task. The updated state of the task executing the IRET instructionis saved inits TSS. If thetask is
reentered later, the code that follows the IRET instruction is executed.

Intel Architecture Software Developer's Manual 47-173

Operation

GOTO REAL- ADDRESS- MODE: ;

GOTO PROTECTED- MODE;
Fl;

REAL - ADDRESS- MODE;
| F OperandSi ze = 32
THEN
IF top 12 bytes of stack not within stack limts THEN #SS; FI;
IF instruction pointer not within code segnent |inmits THEN #GP(0); FI;
EIP — Pop();
CS « Pop(); (* 32-bit pop, high-order 16-bits discarded *)
t enpEFLAGS ~ Pop();
EFLAGS ~ (tenpEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limts THEN #SS; FI;
IF instruction pointer not within code segnment limts THEN #GP(0); FI;
EIP ~ Pop();
EIP - EIP AND 0000FFFFH,
CS ~ Pop(); (* 16-bit pop *)
EFLAGS[15: 0] « Pop();
Fl;
END;

PROTECTED- MODE:
IF VM=1 (* Virtual -8086 npde: PE=1, VM1 *)
THEN
GOTO RETURN- FROM VI RTUAL- 8086- MODE; (* PE=1, VM1 *)

GOTO TASK- RETURN; (*PE=1, VM0, NT=1 *)

| F Oper andSi ze=32
THEN
IF top 12 bytes of stack not within stack limts
THEN #SS(0)
Fl;
teerEI P « Pop();
teerCS ~ Pop();
enpEFLAGS -~ Pop()
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limts
THEN #SS(0) ;
Fl;
tenpEl P — Pop();
tenpCS ~ Pop();
t enpEFLAGS ~ Pop()
tenpEl P ~ tenpElP AND FFFFH;
t enpEFLAGS ~ t enpEFLAGS AND FFFFH;
Fl;
| F tenpEFLAGS(VM = 1 AND CPL=0
THEN

GOTO RETURN- TO- VI RTUAL- 8086- MODE;
(* PE=1, VM=l in EFLAGS inmage *)
ELSE
GOTO PROTECTED- MODE- RETURN;
(* PE=1, VM:=0 in EFLAGS inmge *)
Fl;

RETURN- FROMt VI RTUAL - 8086- MODE:
(* Processor is in virtual-8086 npde when IRET is executed and stays in virtual -8086 node *)
IF 10PL=3 (* Virtual node: PE=1, VMF1, |OPL=3 *)
THEN | F OperandSi ze = 32
THEN
IF top 12 bytes of stack not within stack limts THEN #SS(0); FI;
IF instruction pointer not within code segnment limts THEN #GP(0); FI;
EIP ~ Pop();
CS ~ Pop(); (* 32-bit pop, high-order 16-bits discarded *)

p
(*VM | OPL, VI P, and VI F EFLAGS bits are not nodified by pop *)
ELSE (* OperandSize = 16 *)

IF top 6 bytes of stack are not within stack limts THEN #SS(0); FI;
I'F instruction pointer not within code segment limts THEN #GP(0); FI;
EIP — Pop();

EIP — EI'P AND 0000FFFFH;

CS « Pop(); (* 16-bit pop *

EFLAGS[15: 0] ~ Pop(); (* IOPL in EFLAGS is not nodified by pop *)
Fl;

SE
#CGP(0); (* trap to virtual -8086 nonitor: PE=1, VM1, |OPL<3 *)

47-174 Intel Architecture Software Developer’'s Manual

END;

RETURN- TO- VI RTUAL- 8086- MODE:
(* Interrupted procedure was in virtual -8086 node: PE=1, VM=l in flags image *)

END;

IF top 24 bytes of stack are not within stack segnent linmits
THEN #SS(0) ;

Fl;

IF instruction pointer not within code segnent linits
THEN #GP(0) ;

Fl;

CS ~ tempCs;

EIP ~ tenpElP;

EFLAGS -~ tenpEFLAGS

TenpESP ~ Pop();

TenpSS ~ Pop();

ES « Pop(); (* pop 2 words; throw away hi gh-order word *)

DS — Pop(); (* pop 2 words; throw away hi gh-order word *)

FS « Pop(); (* pop 2 words; throw away hi gh-order word *)

GS <« Pop(); (* pop 2 words; throw away high-order word *)

SS: ESP ~ TenpSS: TenpESP;

(* Resune execution in Virtual-8086 node *)

TASK- RETURN: (* PE=1, VME1l, NT=1 *)

END;

Read segnent selector in link field of current TSS;
IF local/global bit is set to |ocal
OR index not within GDT limts
THEN #GP(TSS sel ector);
Fl;
Access TSS for task specified in link field of current TSS;
| F TSS descriptor type is not TSS or if the TSS is marked not busy
THEN #GP(TSS sel ector);
Fl;
I F TSS not present
THEN #NP(TSS sel ector);
Fl;
SW TCH- TASKS (wi thout nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segnment limt
THEN #GP(0) ;
Fl;

PROTECTED- MODE- RETURN: (* PE=1, VM=O in flags image *)

END;

IF return code segnment selector is null THEN GP(0); FI;
IF return code segnment sel ector addrsses descriptor beyond descriptor table limt
THEN GP(sel ector; FI;
Read segnent descriptor pointed to by the return code segnent sel ector
IF return code segnent descriptor is not a code segnent THEN #GP(sel ector); FI;
IF return code segnent selector RPL < CPL THEN #GP(sel ector); FI;
IF return code segnent descriptor is conformng
AND return code segnment DPL > return code segnent selector RPL
THEN #GP(sel ector); FI;
IF return code segnent descriptor is not present THEN #NP(sel ector); FI:
IF return code segnent selector RPL > CPL
THEN GOTO RETURN- OUTER- PRI VI LEGE- LEVEL;
ELSE GOTO RETURN- TO- SAME- PRI VI LEGE- LEVEL
Fl;

RETURN- TO- SAME- PRI VI LEGE- LEVEL: (* PE=1, VM=0 in flags inmage, RPL=CPL *)

END;

IF EIP is not within code segnent limts THEN #GP(0); FI;
EIP — tenpElP;
CS ~ tempCsS; (* segment descriptor information also |oaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) « tenpEFLAGS;
| F Oper andSi ze=32
THEN
EFLAGS(RF, AC, 1D «~ tenpEFLAGS;
Fl;
IF CPL < | OPL
THEN
EFLAGS(I F) ~ tenpEFLAGS;
Fl;
IFCPL =0
THEN
EFLAGS(I1 OPL) ~ tenpEFLAGS;
| F Oper andSi ze=32
THEN EFLAGS(VM VIF, VIP) tenpEFLAGS;
Fl;
Fl;

RETURN- TO- OUTER- PRI VI LGE- LEVEL:

| F Oper andSi ze=32
THEN

Intel Architecture Software Developer's Manual 47-175

IF top 8 bytes on stack are not within limts THEN #SS(0); FI;
ELSE (* OperandSi ze=16 *)
IF top 4 bytes on stack are not within limts THEN #SS(0); FI;
Fl;
Read return segnent sel ector;
| F stack segnent selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limts
THEN #GP(SSsel ector); FI;
Read segnent descriptor pointed to by return segment selector;
I F stack segnent selector RPL # RPL of the return code segment sel ector
| F stack segnent selector RPL # RPL of the return code segnent sel ector
OR the stack segment descriptor does not indicate a a witable data segnent;
OR stack segnment DPL # RPL of the return code segnent sel ector
THEN #GP(SS sel ector);
Fl;
| F stack segnent is not present THEN #SS(SS sel ector); FI;
IF tenpEIP is not within code segnent limt THEN #GP(0); FI;
EIP ~ tenpElP;
CS ~ tenpCs;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) «~ tenpEFLAGS;
| F Oper andSi ze=32
THEN
EFLAGS(RF, AC, ID) «~ tenpEFLAGS;
Fl;
IF CPL < | OPL
THEN
EFLAGS(I F) « tenpEFLAGS;
Fl;
IF CPL =0
THEN
EFLAGS(| OPL) « tenpEFLAGS;
| F Oper andSi ze=32
THEN EFLAGS(VM VIF, VIP) ~ tenpEFLAGS;
Fl;
Fl;
CPL —~ RPL of the return code segnent selector;
FOR each of segnent register (ES, FS, GS, and DS)
| F segnent register points to data or non-conform ng code segnent
AND CPL > segnent descriptor DPL (* stored in hidden part of segnent register *)
THEN (* segment register invalid *)
Segnent Sel ector —~ 0; (* null segnent selector *)
Fl;
ao;
END:

Flags Affected

All the flags and fields in the EFL AGS register are potentially modified, depending on the mode of
operation of the processor. If performing areturn from a nested task to a previous task, the

EFLAGS register will be modified according to the EFLAGS image stored in the previous task’s
TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code segment limit.
#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL of the
code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return code
segment selector.

If the stack segment is not a writable data segment.

47-176 Intel Architecture Software Developer’'s Manual

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the segment selector for aTSS hasits local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.
#SS(0) If the top bytes of stack are not within stack limits.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If apage fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3
#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.

Intel Architecture Software Developer’'s Manual 47-177

47-178

Intel Architecture Software Developer’'s Manual

